Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38040983

RESUMO

Several epidemiological, clinical and experimental studies in recent decades have shown the relationship between exposure to stressors during development and health outcomes later in life. The characterization of these susceptible phases, such as preconception, gestation, lactation and adolescence, and the understanding of factors that influence the risk of an adult individual for developing obesity, metabolic and cardiovascular diseases, is the focus of the DOHaD (Developmental Origins of Health and Disease) research line. In this sense, advancements in molecular biology techniques have contributed significantly to the understanding of the mechanisms underlying the observed phenotypes, their morphological and physiological alterations, having as a main driving factor the epigenetic modifications and their consequent modulation of gene expression. The present narrative review aimed to characterize the different susceptible phases of development and associated epigenetic modifications, and their implication in the development of non-communicable diseases. Additionally, we provide useful insights into interventions during development to counteract or prevent long-term programming for disease susceptibility.

2.
J Dev Orig Health Dis ; 14(5): 614-622, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37955113

RESUMO

The aim of this study was to evaluate whether high-fat (HF) diet intake during puberty can program obesity as well as generate glucose imbalance and hepatic metabolic dysfunctions in adult life. Male Wistar rats were randomly assigned into two groups: rats fed standard chow (NF) and rats fed a HF from postnatal 30-day-old (PND30) until PND60. Then, both groups were fed a standard chow from PND60 until PND120. Euthanasia and samples collections occurred at PND120. HF animals were overweight (+11%) and had increased adiposity, hyperphagia (+12%), hyperglycaemia (+13%), hyperinsulinemia (+69%), and hypertriglyceridemia (+34%). Plasma glucose levels during intravenous glucose tolerance test (ivGTT) and intraperitoneal insulin tolerance test (ipITT) were also higher in the HF group, whereas Kitt was significantly lower (-34%), suggesting reduced insulin sensitivity. In the same sense, HF animals present pancreatic islets hypertrophy and high ß-cell mass. HF animals also had a significant increase in blood glucose levels during pyruvate tolerance test, indicating increased gluconeogenesis. Hepatic morphology analyses showed an increase in lipid inclusion in the HF group. Moreover, PEPCK and FAS protein expression were higher in the livers of the HF animals (+79% and + 37%, respectively). In conclusion, HF during puberty causes obese phenotype leading to glucose dyshomeostasis and nonalcoholic fatty liver disease, which can be related to the overexpression of proteins PEPCK and FAS.


Assuntos
Glicemia , Dieta Hiperlipídica , Ratos , Masculino , Animais , Dieta Hiperlipídica/efeitos adversos , Glicemia/análise , Ratos Wistar , Maturidade Sexual , Obesidade/complicações , Obesidade/metabolismo , Glucose/metabolismo
3.
Nutrients ; 15(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37630771

RESUMO

Nutritional disturbances during the early postnatal period can have long-lasting effects on neurodevelopment and may be related to behavioural changes at adulthood. While such neuronal connection disruption can contribute to social and behaviour alterations, the dysregulation of the neuroendocrine pathways involved in nutrient-sensing balance may also cause such impairments, although the underlying mechanisms are still unclear. We aimed to evaluate sex-specific neurodevelopmental and behavioural changes upon postnatal overfeeding and determine the potential underpinning mechanisms at the central nervous system level, with a focus on the interconnection between synaptic and neuroendocrine molecular alterations. At postnatal day 3 (PND3) litters were culled to three animals (small litter procedure). Neurodevelopmental tests were conducted at infancy, whereas behavioural tests to assess locomotion, anxiety, and memory were performed at adolescence, together with molecular analysis of the hippocampus, hypothalamus, and prefrontal cortex. At infancy, females presented impaired acquisition of an auditory response, eye opening, olfactory discrimination, and vestibular system development, suggesting that female offspring neurodevelopment/maturation was deeply affected. Male offspring presented a transitory delay in locomotor performance., while both offspring had lower upper limb strength. At adolescence, both sexes presented anxious-like behaviour without alterations in short-term memory retention. Both males and females presented lower NPY1R levels in a region-specific manner. Furthermore, both sexes presented synaptic changes in the hippocampus (lower GABAA in females and higher GABAA levels in males), while, in the prefrontal cortex, similar higher GABAA receptor levels were observed. At the hypothalamus, females presented synaptic changes, namely higher vGLUT1 and PSD95 levels. Thus, we demonstrate that postnatal overfeeding modulates offspring behaviour and dysregulates nutrient-sensing mechanisms such as NPY and GABA in a sex- and brain-region-specific manner.


Assuntos
Ansiedade , Roedores , Feminino , Masculino , Animais , Transtornos de Ansiedade , Córtex Pré-Frontal , Ácido gama-Aminobutírico
4.
Nutrients ; 15(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36904281

RESUMO

Obesogenic environments such as Westernized diets, overnutrition, and exposure to glycation during gestation and lactation can alter peripheral neuroendocrine factors in offspring, predisposing for metabolic diseases in adulthood. Thus, we hypothesized that exposure to obesogenic environments during the perinatal period reprograms offspring energy balance mechanisms. Four rat obesogenic models were studied: maternal diet-induced obesity (DIO); early-life obesity induced by postnatal overfeeding; maternal glycation; and postnatal overfeeding combined with maternal glycation. Metabolic parameters, energy expenditure, and storage pathways in visceral adipose tissue (VAT) and the liver were analyzed. Maternal DIO increased VAT lipogenic [NPY receptor-1 (NPY1R), NPY receptor-2 (NPY2R), and ghrelin receptor], but also lipolytic/catabolic mechanisms [dopamine-1 receptor (D1R) and p-AMP-activated protein kinase (AMPK)] in male offspring, while reducing NPY1R in females. Postnatally overfed male animals only exhibited higher NPY2R levels in VAT, while females also presented NPY1R and NPY2R downregulation. Maternal glycation reduces VAT expandability by decreasing NPY2R in overfed animals. Regarding the liver, D1R was decreased in all obesogenic models, while overfeeding induced fat accumulation in both sexes and glycation the inflammatory infiltration. The VAT response to maternal DIO and overfeeding showed a sexual dysmorphism, and exposure to glycotoxins led to a thin-outside-fat-inside phenotype in overfeeding conditions and impaired energy balance, increasing the metabolic risk in adulthood.


Assuntos
Fenômenos Fisiológicos da Nutrição Materna , Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Masculino , Gravidez , Ratos , Tecido Adiposo/metabolismo , Dieta Hiperlipídica , Metabolismo Energético , Fígado/metabolismo , Obesidade/metabolismo , Obesidade Materna/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo
5.
Nutrition ; 108: 111945, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36696704

RESUMO

OBJECTIVES: Maternal protein-caloric restriction during lactation can malprogram offspring into having a lean phenotype associated with metabolic dysfunction in early life and adulthood. The aim of this study was to investigate the relationships between nutritional stress, maternal behavior and metabolism, milk composition, and offspring parameters. Additionally, we focused on the role of hypothalamus-pituitary-adrenal axis hyperactivation during lactation. METHODS: Dams were fed a low-protein diet (4% protein) during the first 2 wk of lactation or a normal-protein diet (20% protein) during all lactation. Analyses of dams, milk, and offspring were conducted on postnatal days (PD) 7, 14, and 21. RESULTS: Body weight and food intake decreased in dams, which was associated with reduced fat pad stores and increased corticosterone levels at PD 14. The stressed low-protein diet dams demonstrated alterations in behavior and offspring care. Despite nutritional deprivation, dams adapted their metabolism to provide adequate energy supply through milk; however, we demonstrated elevated corticosterone and total fat levels in milk at PD 14. Male offspring also showed increased corticosterone at PD 7, associated with a lean phenotype and alterations in white and brown adipose tissue morphology at PD 21. CONCLUSION: Exposure to protein-caloric restriction diet of dams during lactation increased the glucocorticoid levels in dams, milk, and offspring, which is associated with alterations in maternal behavior and milk composition. Thus, glucocorticoids and milk composition may play an important role in metabolic programming induced by maternal undernutrition.


Assuntos
Leite , Obesidade , Feminino , Ratos , Animais , Masculino , Humanos , Obesidade/metabolismo , Restrição Calórica , Sistema Hipotálamo-Hipofisário , Corticosterona , Sistema Hipófise-Suprarrenal , Lactação/fisiologia , Proteínas/metabolismo , Tecido Adiposo Marrom/metabolismo , Fenômenos Fisiológicos da Nutrição Materna
6.
Front Physiol ; 13: 840179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574445

RESUMO

Perturbations to nutrition during critical periods are associated with changes in embryonic, fetal or postnatal developmental patterns that may render the offspring more likely to develop cardiovascular disease in later life. The aim of this study was to evaluate whether autonomic nervous system imbalance underpins in the long-term hypertension induced by dietary protein restriction during peri-pubertal period. Male Wistar rats were assigned to groups fed with a low protein (4% protein, LP) or control diet (20.5% protein; NP) during peri-puberty, from post-natal day (PN) 30 until PN60, and then all were returned to a normal protein diet until evaluation of cardiovascular and autonomic function at PN120. LP rats showed long-term increased mean arterial pressure (p = 0.002) and sympathetic arousal; increased power of the low frequency (LF) band of the arterial pressure spectral (p = 0.080) compared with NP animals. The depressor response to the ganglion blocker hexamethonium was increased in LP compared with control animals (p = 0.006). Pulse interval variability showed an increase in the LF band and LF/HF ratio (p = 0.062 and p = 0.048) in LP animals. The cardiac response to atenolol and/or methylatropine and the baroreflex sensitivity were similar between groups. LP animals showed ventricular hypertrophy (p = 0.044) and increased interstitial fibrosis (p = 0.028) compared with controls. Reduced protein carbonyls (PC) (p = 0.030) and catalase activity (p = 0.001) were observed in hearts from LP animals compared with control. In the brainstem, the levels of PC (p = 0.002) and the activity of superoxide dismutase and catalase (p = 0.044 and p = 0.012) were reduced in LP animals, while the levels of GSH and total glutathione were higher (p = 0.039 and p = 0.038) compared with NP animals. Protein restriction during peri-pubertal period leads to hypertension later in life accompanied by sustained sympathetic arousal, which may be associated with a disorganization of brain and cardiac redox state and structural cardiac alteration.

7.
Toxicol Appl Pharmacol ; 429: 115712, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34481828

RESUMO

Metformin (Met) is widely used to control blood glucose levels and acts on various organs, including reproductive tissues, to improve reproductive and lifespan. This study evaluated whether neonatal Met exposure prevented male reproductive dysfunction caused by being overweight during adulthood. Randomized Wistar rat pups received an intraperitoneal injection from postnatal days (PNDs) 1 to 12of saline (Sal; 0.9% NaCl/day in 2mL/kg) or Met (100 mg/kg/day in 2 mL/kg). From PNDs 60 to 90, the animals received a regular (R; 4.5% fat; Sal R and Met R groups) or a high-fat (HF; 35% fat; Sal HF and Met HF groups) diet. At PND 90, all animals were euthanized to evaluate their biometric and reproductive parameters. The Sal and Met groups with R showed similar body weights, however, the HF diet increased the body weight in both groups. The Sal HF group showed testicular damage regarding in antioxidant status and inflammatory profile in the epididymal cauda. The HF diet reduced Leydig and Sertoli cells numbers, with lower sperm quality. The Met R animals showed positive reproductive programming, due to improved antioxidant defense, inflammatory biomarkers, and sperm morphology. Met HF prevented HF diet damage to reproductive organs and sperm morphology, but not to sperm motility. Early Met exposure positively affected the male reproductive system of adult rats, preventing reproductive HF disorders. STATEMENT OF NOVELTY AND SIGNIFICANCE: Metformin is used to control type 2 diabetes mellitus and can act to improve metabolism and lifespan. Metformin avoidance is recommended during pregnancy, but there is no information regarding its use when breastfeeding. For the first time, we showed in this current study that metformin positively acts in the male reproductive tissues and helps involved in later life. These data showed a better antioxidant defense and anti-inflammatory profile of Metformin animals than Saline animals and might directly improve reproductive organs morphophysiology and sperm morphology. Also, the neonatal Met application programs the male reproduction to counterbalance damages from an obesogenic environment in later life.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Metformina/administração & dosagem , Reprodução/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Esquema de Medicação , Mediadores da Inflamação/metabolismo , Lactação , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Testículo/metabolismo , Testículo/patologia , Testículo/fisiopatologia , Testosterona/sangue
8.
Front Endocrinol (Lausanne) ; 12: 660793, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149616

RESUMO

Metformin is an antidiabetic drug used for the treatment of diabetes and metabolic diseases. Imbalance in the autonomic nervous system (ANS) is associated with metabolic diseases. This study aimed to test whether metformin could improve ANS function in obese rats. Obesity was induced by neonatal treatment with monosodium L-glutamate (MSG). During 21-100 days of age, MSG-rats were treated with metformin 250 mg/kg body weight/day or saline solution. Rats were euthanized to evaluate biometric and biochemical parameters. ANS electrical activity was recorded and analyzed. Metformin normalized the hypervagal response in MSG-rats. Glucose-stimulated insulin secretion in isolated pancreatic islets increased in MSG-rats, while the cholinergic response decreased. Metformin treatment normalized the cholinergic response, which involved mostly the M3 muscarinic acetylcholine receptor (M3 mAChR) in pancreatic beta-cells. Protein expression of M3 mAChRs increased in MSG-obesity rats, while metformin treatment decreased the protein expression by 25%. In conclusion, chronic metformin treatment was effective in normalizing ANS activity and alleviating obesity in MSG-rats.


Assuntos
Sistema Nervoso Autônomo/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Obesidade/tratamento farmacológico , Acetilcolina/farmacologia , Animais , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Neostigmina/farmacologia , Obesidade/induzido quimicamente , Obesidade/metabolismo , Obesidade/fisiopatologia , Ratos Wistar , Receptor Muscarínico M3/metabolismo , Glutamato de Sódio , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiologia
9.
Front Cell Dev Biol ; 9: 659032, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898461

RESUMO

A new infectious disease, COVID-19, has spread around the world. The most common symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are cough and fever, but severe cases can develop acute respiratory distress syndrome. The main receptor for SARS-CoV-2 in human tissue is angiotensin-converting enzyme 2, and the lungs, heart, and kidneys are the most affected organs. Besides the inflammatory process and tissue damage, the presence of a cytokine "storm" has been related to a higher mortality rate. Other infectious viral diseases, such as Zika, chikungunya, and influenza, were associated with complications in pregnant women, such as growth restriction, malformation, preterm birth, low birth weight, miscarriage, and death, although they can also cause developmental disorders in infants and adolescents. Evidence points out that stressors during pregnancy and infancy may lead to the development of obesity, diabetes, and cardiovascular disease. Therefore, we hypothesize that COVID-19 infection during the critical phases of development can program the individual to chronic diseases in adulthood. It is important that COVID-19 patients receive proper monitoring as a way to avoid expensive costs to public health in the future.

10.
Nutr Neurosci ; 23(6): 432-443, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30187832

RESUMO

Objectives: We aimed to assess the effects of a maternal protein-caloric restriction diet during late pregnancy on the metabolism of rat offspring fed a high-fat diet (HFD) during adulthood.Methods: During late pregnancy, rat dams received either a low-protein (4%; LP group) or normoprotein (23%; NP group) diet. After weaning, the offspring were fed a standard diet (Control; C). Male offspring (60 days old) from both groups were then fed either the C diet or HFD until they were 90 days old. The adult offspring and maternal metabolic parameters and autonomic nervous system (ANS) were then evaluated.Results: Dams exhibited low body weight gain and food intake during the LP diet consumption. At lactation, these dams showed high body weight gain, hypoinsulinemia and hyperglycemia. The maternal LP diet resulted in low body weights for the pups. There were also no differences in the metabolic parameters between the adult LP offspring that were fed the C diet and the NP group. Adults of both groups that were fed the HFD developed obesity associated with altered insulin/ glucose homeostasis and altered ANS activity; however, the magnitudes of these parameters were higher in the LP group than in the NP group.Conclusions: Maternal protein malnutrition during the last third of pregnancy malprograms the metabolism of rat offspring, resulting in increased vulnerability to HFD-induced obesity, and the correlated metabolic impairment might be associated with lower sympathetic nerve activity in adulthood.


Assuntos
Desnutrição/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Complicações na Gravidez/metabolismo , Sistema Nervoso Simpático/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos Wistar
11.
J Physiol ; 597(15): 3905-3925, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31210356

RESUMO

KEY POINTS: Cancer growth, cell proliferation and cachexia index can be attenuated by the beneficial programming effect of moderate exercise training, especially if it begins in adolescence. Walker 256 tumour-bearing rats who started exercise training during adolescence did not revert the basal low glycaemia and insulinaemia observed before tumour cell inoculation. The moderate exercise training improved glucose tolerance and peripheral insulin sensitivity only in rats exercised early in adolescence. The chronic effects of our exercise protocol are be beneficial to prevent cancer cachexia and hold clear potential as a nonpharmacological therapy of insulin sensitization. ABSTRACT: We tested the hypothesis that moderate exercise training, performed early, starting during adolescence or later in life during adulthood, can inhibit tumour cell growth as a result of changes in biometric and metabolic markers. Male rats that were 30 and 70 days old performed a treadmill running protocol over 8 weeks for 3 days week-1 , 44 min day-1 and at 55-65% V̇O2max . After the end of training, a batch of rats was inoculated with Walker 256 carcinoma cells. At 15 days after carcinoma cell inoculation, the tumour was weighed and certain metabolic parameters were evaluated. The data demonstrated that physical performance was better in rats that started exercise training during adolescence according to the final workload and V̇O2max . Early or later moderate exercise training decreased the cachexia index, cell proliferation and tumour growth; however, the effects were more pronounced in rats that exercised during adolescence. Low glycaemia, insulinaemia and tissue insulin sensitivity was not reverted in Walker 256 tumour-bearing rats who trained during adolescence. Cancer growth can be attenuated by the beneficial programming effect of moderate exercise training, especially if it begins during adolescence. In addition, improvement in glucose-insulin homeostasis might be involved in this process.


Assuntos
Carcinoma 256 de Walker/terapia , Condicionamento Físico Animal/métodos , Animais , Caquexia/metabolismo , Caquexia/prevenção & controle , Carcinoma 256 de Walker/patologia , Carcinoma 256 de Walker/prevenção & controle , Células Cultivadas , Glucose/metabolismo , Resistência à Insulina , Masculino , Ratos , Ratos Wistar
12.
Endocrine ; 63(1): 62-69, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30128960

RESUMO

PURPOSE: The early-life nutritional environment affects long-term glucose homeostasis, we investigated the effects of maternal low-protein diet combined with postnatal early overfeeding on the male offspring's glucose homeostasis in adulthood. METHODS: Only male rats were used, and their delivery was considered postnatal-day 0 (PN0). Wistar rats' dams were divided into control (NP) or low-protein diet (LP). LP dams remained on the diet until PN14, after which all animals were supplied with the control diet. At PN2, litters were adjusted to 9 (control-NL) or 3 (postnatal-overfeeding-PO) pups, resulting in four experimental groups: NP-NL, NP-PO, LP-NL, and LP-PO. Litters were weaned on PN21. At PN80, a batch of animals from all experimental groups underwent surgery for cannula implantation, followed by intravenous glucose tolerance test (ivGTT), but the insulinogenic index (ISI) was calculated. At PN81, animals were euthanized and tissues were collected. RESULTS: LP-diet and early postnatal-overfeeding were effective in promoting the expected biometric outcomes at PN21 and PN81, but the LP-PO animals present a biometric profile similar to the control (NP-NL) group. Postnatal-overfeeding increased fasting glycemia in LP-PO animals (p < 0.01). In the ivGTT, postnatal-overfeeding elevated the glycemia (p < 0.0001), exacerbated in LP-PO animals (p < 0.0001). Insulinemia was reduced by both, maternal LP-diet and postnatal-overfeeding, with a higher degree of reduction in LP-PO animals (p < 0.0001). Maternal LP-diet and postnatal-overfeeding reduced the ISI (p < 0.0001). Factors interaction lead the LP-PO to a lower ISI compared to all other groups (p < 0.0001). CONCLUSIONS: The combination of low-protein diet in breastfeeding dams with postnatal overfeeding disturbed the offspring's glucose metabolism in adulthood.


Assuntos
Glicemia/metabolismo , Dieta com Restrição de Proteínas/efeitos adversos , Hiperfagia/complicações , Lactação , Animais , Animais Recém-Nascidos , Ingestão de Alimentos , Feminino , Teste de Tolerância a Glucose , Homeostase , Insulina/sangue , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Ratos , Ratos Wistar
13.
Life Sci ; 213: 134-141, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30343128

RESUMO

Menopause induces osteoporosis, sarcopenia, insulin resistance, and dyslipidemia. Ovariectomized (OVX) rat is an animal model, which mimetics postmenopausal conditions. The present study aimed to test the effects of strength training protocol on bone mineral density and metabolic parameters in OVX rats. Female Wistar rats were randomly separated in four groups: non-ovariectomized rats (Sham); ovariectomized rats (OVX); OVX treated with 17ß-estradiol (HR); and OVX trained group (TR). At 70-days-old OVX groups were submitted to a bilateral ovariectomy. Hormonal replacement and strength training were performed three times per week, for 60 days. 17ß-estradiol was administered by intramuscular injection (50 µg/kg of BW) and strength training protocol was composed by four series of 12 repetitions with 65-75% of 1RM. As expected, OVX impaired glucose homeostasis, promoted weight and adiposity gain, dyslipidemia, sarcopenia and osteoporosis, but hormonal replacement and strength training improved most of these parameters. Both HR and TR normalize glucose homeostasis; however, only TR restores blood insulin. OXV also reduced the maximum force in 42%, but TR improved this parameter in 110%, in addition TR prevents sarcopenia and fat mass gain. Interestingly, strength training was able to improve significantly BMD. Taken together, these data suggest that strength training can be effective in the treatment of damage caused by OVX, which in a translational context, becomes an effective non-pharmacological strategy to improve the health of postmenopausal women, reducing costs with secondary symptoms, mainly caused by weight gain, sarcopenia and osteoporosis.


Assuntos
Osteoporose/etiologia , Osteoporose/terapia , Condicionamento Físico Animal/fisiologia , Animais , Densidade Óssea/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Fêmur/efeitos dos fármacos , Ovariectomia/efeitos adversos , Ratos , Ratos Wistar , Treinamento de Força/métodos
14.
Front Physiol ; 9: 465, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867528

RESUMO

Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55-65% VO2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training did not cause injury or trigger inflammatory processes prior to tumor cell inoculation. Taken together, the current study suggests that aerobic exercise training applied during adolescence may mitigate tumor growth and related disorders in Walker 256 tumor-bearing adult rats. Improved insulin sensibility, lower glucose and insulin levels and/or reduced insulin secretion stimulated by glucose may be implicated in this tumor attenuation.

15.
Eur J Nutr ; 57(2): 477-486, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27752755

RESUMO

PURPOSE: Environmental and nutritional disorders during perinatal period cause metabolic dysfunction in the progeny and impair human health. Advanced glycation end products (AGEs) are primarily produced during metabolism of excess blood glucose, which is observed in diabetes. Methylglyoxal (MG) is a precursor for the generation of endogenous AGEs, which disturbs the metabolism. This work aimed to investigate whether the maternal MG treatment during lactation programs the progeny to metabolic dysfunction later in life. METHODS: Female Wistar rats were divided into two groups: control group (C) treated with saline and MG group treated with MG (60 mg/kg/day) by gavage throughout the lactation period. Both mothers and offspring were fed a standard chow. At weaning, breast milk composition was analyzed and mothers euthanized for blood and tissue sample collections. At 90 days of age, offspring were submitted to glucose tolerance test (ivGTT) and euthanized for blood and tissue samples collection. RESULTS: MG mothers showed increase in glucose and fructosamine levels; however, they showed low insulin levels and failure in ß-cell function (p < 0.05). MG mothers also showed dyslipidemia (p < 0.05). Moreover, breast milk had elevated levels of glucose, triglycerides, cholesterol and fructosamine and low insulin (p < 0.05). Interestingly, MG offspring had increased body weight and adipose tissue at adulthood, and they also showed glucose intolerance and failure in ß-cell function (p < 0.05). Besides, MG offspring showed dyslipidemia (p < 0.05) increasing cardiovascular diseases risk. CONCLUSIONS: Maternal MG treatment negatively affects the male rat offspring, leading to type 2 diabetes and dyslipidemia in later life, possibly by changes in breast milk composition.


Assuntos
Diabetes Mellitus Tipo 2/induzido quimicamente , Dislipidemias/induzido quimicamente , Poluentes Ambientais/toxicidade , Lactação/efeitos dos fármacos , Exposição Materna/efeitos adversos , Obesidade/induzido quimicamente , Aldeído Pirúvico/toxicidade , Adiposidade/efeitos dos fármacos , Administração Oral , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dislipidemias/sangue , Dislipidemias/metabolismo , Dislipidemias/patologia , Poluentes Ambientais/administração & dosagem , Poluentes Ambientais/análise , Feminino , Insulina/análise , Insulina/sangue , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Lactação/metabolismo , Masculino , Leite/química , Obesidade/sangue , Obesidade/metabolismo , Obesidade/patologia , Gravidez , Aldeído Pirúvico/administração & dosagem , Aldeído Pirúvico/análise , Distribuição Aleatória , Ratos Sprague-Dawley , Toxicocinética , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...